Simplifying Complex Exponential Expressions
This article aims to break down the simplification process of the following complex exponential expression:
((5^(-1)times 7^(2))/(5^(2)times7^(-4)))^(7/2)times((5^(-2)times7^(3))/(5^(3)times7^(-5)))^(-5/2)
Let's approach this step-by-step:
1. Applying the Rules of Exponents
We'll utilize the following rules to simplify our expression:
- Product of Powers: x<sup>m</sup> * x<sup>n</sup> = x<sup>(m+n)</sup>
- Quotient of Powers: x<sup>m</sup> / x<sup>n</sup> = x<sup>(m-n)</sup>
- Power of a Power: (x<sup>m</sup>)<sup>n</sup> = x<sup>(m*n)</sup>
2. Simplifying the Inner Expressions
- First Expression: ((5^(-1)times 7^(2))/(5^(2)times7^(-4)))
- Applying the Quotient of Powers rule: 5<sup>(-1-2)</sup> * 7<sup>(2-(-4))</sup> = 5<sup>-3</sup> * 7<sup>6</sup>
- Second Expression: ((5^(-2)times7^(3))/(5^(3)times7^(-5)))
- Applying the Quotient of Powers rule: 5<sup>(-2-3)</sup> * 7<sup>(3-(-5))</sup> = 5<sup>-5</sup> * 7<sup>8</sup>
3. Applying the Power of a Power Rule
- First Expression: (5<sup>-3</sup> * 7<sup>6</sup>)<sup>(7/2)</sup> = 5<sup>(-3*(7/2))</sup> * 7<sup>(6*(7/2))</sup> = 5<sup>-21/2</sup> * 7<sup>21</sup>
- Second Expression: (5<sup>-5</sup> * 7<sup>8</sup>)<sup>(-5/2)</sup> = 5<sup>(-5*(-5/2))</sup> * 7<sup>(8*(-5/2))</sup> = 5<sup>25/2</sup> * 7<sup>-20</sup>
4. Combining the Simplified Expressions
Now we have: (5<sup>-21/2</sup> * 7<sup>21</sup>) * (5<sup>25/2</sup> * 7<sup>-20</sup>)
Applying the Product of Powers rule: 5<sup>(-21/2 + 25/2)</sup> * 7<sup>(21-20)</sup> = 5<sup>2</sup> * 7<sup>1</sup>
5. Final Simplification
The simplified form of the original complex expression is: 5<sup>2</sup> * 7<sup>1</sup> = 25 * 7 = 175
Therefore, the value of the given complex exponential expression is 175.